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Finite element methods have been used to calculate the rate of release of strain energy caused 
by growth of an internal crack in some model elastic composites under tension. A layer of a 
linearly elastic material was considered, bonded between two flat or two spherical rigid sur- 
faces. The reduction in strain energy caused by a small circular crack at the interface was 
found to be only about one-half of that due to a similar crack in the centre of the layer, in 
accord with the conjecture of Andrews and King. Cracks in the centre of a thin layer bonded 
between flat surfaces caused about the same release of energy as a crack in the centre of a 
thick specimen under the same tensile stress. On the other hand, a crack in a thin layer 
bonded between two spherical surfaces caused a much larger rate of energy release, depend- 
ing on the radius of the layer relative to its minimum thickness. Growth of an initial crack 
would thus occur at a small applied stress. For thin layers between both flat and spherical 
surfaces, the rate of release of energy decreased as the crack grew, indicating that the crack 
would stabilize at a finite size. These conclusions are in accord with some observations of 
cracks in thin elastic layers. 

1. I n t r o d u c t i o n  
Cracks grow when there is enough mechanical energy 
available in the system to drive them forward. This is 
the Griftith fracture criterion: that energy released by 
crack growth must be sufficient to meet the energy 
requirements of a growing crack, termed the fracture 
energy of the material and denoted here G~ [1, 2]. We 
have calculated the rate of release of strain energy for 
a circular crack, of radius c, growing in a layer of an 
elastic material bonded between two rigid spheres, 
Fig. l, or two rigid flat surfaces, Fig. 2. The crack is 
placed either in the centre of the elastic layer, Figs 1 a 
and 2a, or at the centre of the interface between one 
rigid material and the elastic layer, Figs lb and 2b. 
The first corresponds to an internal crack in the 
elastomeric material and the second to a defect in 
adhesion. The corresponding measures of strength are 
G~ units of energy required to tear through unit area 
of material and Ga units of energy for debonding unit 
area of interface. 

The elastic material is assumed to be linearly elastic 
and virtually incompressible. Finite element methods 
are used to calculate the stiffness of the models for 
various sizes of the crack, and hence the strain energy, 
W, corresponding to a given applied force and deflec- 
tion. In this way the reduction, A W, in strain energy 
brought about by the presence of the crack is evalu- 
ated for various crack radii. 

A crack will grow if the rate of reduction in strain 
energy at constant deflection is sufficiently large, i.e. if 

~(AW)/~c  >~ 2~zcG~ (or 2~zcGa) (1) 

We have evaluated the quantity on the left-hand side 
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of Equation 1 numerically, for a wide range of geo- 
metrical shapes. The results are presented here. They 
enable us to calculate the critical loads at which cracks 
of a given size will grow, when the fracture energy, Gc 
or G,, is known. Some conclusions are also drawn on 
the final size of cracks formed between two rigid 
surfaces. 

Cracks are initiated in two ways. They occur natur- 
ally, as defects within the material or at the bonded 
interface. Measurements of the strength of rubbery 
materials suggest that "natural" flaws or stress-raisers 
equivalent to sharp cracks, about 50#m in size, are 
always present [3, 4]. Cracks are also formed within an 
elastomer by internal fracture under a dilatant stress 
[5]. Any small void within an elastomeric solid will 
expand elastically without limit when a critical level of 
triaxial tension, - P ,  is applied, of about 5E/6, where 
E is the tensile (Young's) modulus of elasticity [5, 6]. 
In practice, the void bursts open to form an internal 
crack when 

- P >~ 5E/6 (2) 

This critical condition is readily set up in elasto- 
meric composites near rigid boundaries. For example, 
cracks appear abruptly near the poles of an isolated 
rigid spherical inclusion, in the direction of applied 
tension, when the local triaxial tension reaches the 
critical value [7, 8]. When two rigid spheres are located 
close together in the direction of an applied tension, a 
crack appears in the elastomer layer midway between 
them when the critical condition is reached there [8, 9]. 
Indeed, it seems that a crack always forms where, and 
when, the critical dilatant stress is set up. 
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Figure l (a) A centre crack, and (b) an interfacial crack in an elastic 
layer bonded between rigid spherical end-pieces. 

We now turn to the question o f  the applied stress at 
wh ich  cracks will grow and the size that  they will 
eventually attain. These questions are independent  o f  
the origin o f  the cracks themselves, but  in considering 
them we also are led to consider the question o f  which 
criterion is met first; Equat ion  1, for growth of  an 
initial defect, or Equat ion  2, for bursting open of  an 
initial void. 

2. Ana ly t i ca l  p rocedures  
A finite element ar rangement  with cylindrical sym- 
metry was employed, using 400 elements. It is shown 
schematically for a centre crack o f  radius c in Figs 3 
and 4. In this case only one-half  o f  the complete unit 
was modelled, but  for a single interfacial crack at 
one surface it was necessary to model  the complete 
unit. Calculations were carried out  using the A D I N A  
code [10], the material between the end-pieces being 
assumed to be linearly elastic with a value o f  Poisson's  
ratio, v, o f  either 0.4999 or 0.49, corresponding to 

extreme values for rubber  compounds .  
Values o f  applied force, F, were computed  for unit  

deflection of  the model  and hence the elastic strain 
energy, W, was obtained, given by F/2 .  These values 
were smaller, o f  course, than the value W0 when no 
crack was present, and they decreased as the radius c 
o f  the crack was made larger, becoming zero when the 
radius of  a central crack reached the radius a o f  the 
specimen or  when the interracial crack became equal 
in size to the original bonded area. 

TABLE I Values of / for various thicknesses h of an elastic 
layer bonded between two spherical or two flat surfaces. I i and lc 
denote values for interfacial and centre cracks, respectively 

End pieces a/h li, li, l~, l c, 
v = 0.4999 v = 0.49 v = 0.4999 v = 0.49 

Spherical 50 0.032 - 0.026 
10 0.16 - 0.12 - 
5 0.3O - 0.22 - 
1 0.98 0.98 0.75 0.73 
0.5 1.3l 1.36 1.06 1.15 
0.1 2.41 2.31 2.15 2.00 

Flat 50 0.028 - 0.022 - 
10 0.104 - 0.085 - 
5 0.21 - 0.16 - 
1 0.89 0.97 0.67 0.67 
0.5 1.53 1.60 1.00 1.02 
0.1 - 2.37 2.10 2.06 

Values o f  the reduction, A W, relative to the value 
W0 in the absence o f  a crack, are plotted in Figs 5 to 
8 as a function o f  the crack radius c, relative to the 
radius a o f  the specimen. Four  representative cases are 
shown: thin and thick elastic layers bonded  between 
spherical end-pieces (Figs 5 and 6), and thin and thick 
elastic layers bonded between flat end-pieces (Figs 7 
and 8). 

3. Resul ts  and discussion 
3.1. Small cracks in thin elastic layers 
When  the crack was extremely small in compar ison  
with the radius a of  the specimen, then the reduct ion 
A W in strain energy that it caused was too small to 
determine with any accuracy. As the value o f  c was 
increased, a linear relation was found to hold between 
log A W and log c, as can be seen in Figs 5 to 8, with 
a slope o f  3 in this representation. Thus, when the 
crack size was small in compar ison  with the specimen 
radius 

A W / W o  = k c  ~ = ( c / / )  3 (3) 

where l ( =  k J/3) is a characteristic length o f  the stress 
distribution in elastic layers which may  be regarded as 
an inverse measure o f  the sensitivity o f  the stress 
distribution to the presence o f  a crack. Large values o f  
l correspond to small reductions in elastic strain 
energy for a crack of  given size. 

Values o f  l determined f rom relations like those 
shown in Figs 5 to 8 are given in Table I for various 
thicknesses, h, o f  the elastic layer. They were found to 
be virtually the same for the two values o f  Poisson's  
ratio used here, 0.49 and 0.4999. N o  distinction is 
made hereafter between the two results. 

Values o f  l are plotted against the thickness h, rela- 
tive to the radius a o f  the cylindrical specimen, in 

(o) (b) 

Figure 2 (a) A centre crack, and (b) an interfacial crack in an elastic layer bonded between rigid flat plates. 
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Figure 3 Sketch of  finite element arrangements  for an elastic layer 
containing a centre crack, bonded between two rigid spheres. 

Figs 9 and 10, using logarithmic scales for both axes. 
In this representation they follow linear relations initi- 
ally, with a slope of unity, corresponding to a direct 
proportionality between l and h 

l = ~t7 (4) 

Values of the constant of proportionality ~ are given 
in Table II. 

They were close to unity in all cases, indicating that 
the characteristic length l of the stress distribution in 
thin bonded layers is similar in magnitude to the 
thickness h of the layer itself. However, they were 
clearly smaller for cracks growing in the centre of the 
elastic layer than for interfacial cracks of the same 
size. Thus, from Equation 3, more energy is released 
by a central crack than by an interfacial crack. From 
the computed values of l, we deduce that about twice 
as much energy is released by a central crack, Table I. 
This is consistent with the conclusion of Andrews and 
King [11], that the rate of release of strain energy near 
a rigid boundary is only one-half of that for a central 
crack because only one-half as much material is made 
stress-free as the crack grows. 

3.2. Small cracks in th ick elastic layers 
When the layer thickness, h, was relatively large, of the 
same order as the radius a of the specimen or larger, 
then the characteristic length, 1, no longer followed a 
direct proportionality with h. Instead, it tended to 
increase more slowly, as shown in Figs 9 and 10. The 
logarithmic relations shown there at large values of h 
have slopes of 1/3, corresponding to 

I = #1r (s) 

T A B L E  II Coefficient, ~, of  the relationship, l = cth, for thin 
bonded layers. ~ and ~c denote values for interracial and centre 
cracks, respectively 

(Xi ~c 

Spherical surfaces 1.58 1.26 
Flat surfaces 1.07 0.87 

~ - -  D - - 4  

Figure 4 Sketch of  finite element arrangements for an elastic layer 
containing a centre crack, bonded between two rigid plates. 

The coefficients fl were found to be in satisfactory 
agreement with theoretical values, derived below, of 
0.92 for a centre crack and 1.13 for an interfacial 
crack. 

3.3. Theoretical result for a small crack in a 
th ick layer 

Sack's solution for the breaking stress, ~rb, of a long 
cylindrical specimen containing a small central crack 
of radius c takes the form (12) 

~ = rcEGc/3c (6) 

where E is the tensile (Young's) modulus of elasticity 
of the material. Substituting in terms of the strain 
energy, W0, and strain energy density, U, i.e. the strain 
energy per unit volume in regions remote from the 
crack, where 

and 

U = aZ/2E 

W o = rca2h(a~/2E) 

and employing the Griffith criterion for propagation 
of a circular crack of radius c, Equation 1, we obtain 

A W  = 4C 3 U (7) 

corresponding to 

A W / W o  = (4/70c3/a2h (8) 
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Figure 5 Computed  values of  reduction A W in original elastic 
energy W 0 due to the presence of a crack of  radius c. (O) Interracial 
crack; (O) centre crack. Spherical end-pieces, radius a and separa- 
tion h; h/a = 0.I. ( . . . .  ) A W  = ke 3. 
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Figure 6 Computed values of  reduction AW in original elastic 
energy W0 due to  the presence of a crack of  radius e. (o) Interfacial 
crack; (0) centre crack. Spherical end-pieces, radius a and separa- 
t i o n h ; h / a  = 2 . (  . . . .  ) A W  = ke  3. 
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Figure 8 Computed values of reduction A W in original elastic 
energy W 0 due to the presence of  a crack of radius e. (e)  Interfacial 
crack; (o) centre crack. Flat end-pieces, radius a and separation h; 
h/a = 2 . (  . . . .  ) A W  = kc  3. 

Thus, a small crack in the centre of a long cylindrical 
block in tension causes a reduction in strain energy 
given by Equations 7 and 8. On comparing Equations 
3 and 8, the characteristic length l is given by 

l =  (~za2 /4)]13 h 113 (9) 

Analogous relations for an interfacial crack take the 
form 

6~ = 27zEGa/3C 

A W = 2c3U 

and 

A W i W o  = (2170c31a2h 

in place of Equations 6, 7 and 8. 
Thus, the observed form of the dependence of 1 

upon h for thick layers is accounted for, and a 
theoretical value obtained from Equations 5 and 9 for 
the coefficient/7 (= (ha2/4) 1/3 for a central crack and 
(ha 2/2) 1/3 for an interfacial crack). A quantitative com- 
parison of these values of fl with the calculated results 
is made in Figs 9 and 10. Values of/7 for cracks in 
thick elastic layers are seen to be in satisfactory agree- 
ment with the theoretical values when h/a is greater 
than unity, for specimens with either spherical or flat 
end-pieces, containing either central or interfacial 
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Figure 7 Computed values of  reduction A W in original elastic 
energy W 0 due to the presence of a crack of  radius e. (e)  Interfacial 
crack; (O) centre crack. Flat end-pieces, radius a and separation h; 
h/a = 0.1. ( . . . .  ) AW = ke  3. 
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cracks. Thus, both the form and magnitude of the 
computed rate of release of strain energy by a small 
crack in a thick elastic layer are in reasonable agree- 
ment with analytical solutions. This agreement lends 
support to the other results, when complete analytical 
solutions are not available. 

3.4. Large cracks 
The computed relations for reduction A W in strain 
energy, Figs 5 to 8, show interesting differences as 
the crack radius c is made larger. They depart from 
a proportionality to c 3, but deviate in different 
ways, depending upon the layer thickness, h. For rela- 
tively thin layers, Figs 5 and 7, they become much 
less sensitive to crack size, approaching a constant 
value, i.e. becoming largely independent of c, as c 
approaches its maximum possible value, the radius a 
of the cylindrical specimen. For thick elastic layers, on 
the other hand, Figs 6 and 8, the rate of release of 
strain energy by a growing crack stays constant or 
increases when the crack radius becomes large. These 
differences suggest that a crack growing in a thin layer 
will slow down and stop, because the rate of release of 
strain energy becomes less, whereas a similar crack 
growing in a thick layer will accelerate, in view of the 
increasing rate at which energy becomes available to 
it. 
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Figure 9 Scaling parameter l for small cracks in an elastic layer 
bonded between rigid spherical end-pieces, obtained from initial 
linear relations like those shown in Figs 5 and 6, plotted against the 
relative thickness h/a of the elastic layer. (o) Interfacial cracks; (O) 
centre cracks. ( ) l = c~h, ( . . . .  ) l = flh I/3. 
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Figure 10 Scaling parameter l for small cracks in an elastic layer 
bonded between two rigid flat end-pieces, obtained from initial 
linear relations like those shown in Figs 7 and 8, plotted against the 
relative thickness h/a of  the elastic layer. (o) InterfaciaI cracks; (o) 
centre cracks. ( - - )  l = c~h, ( . . . .  ) l = flh I/3. 

3.5. Predicted loads at wh ich  a small initial 
crack in a thin elastic layer wi l l  g row 

Equations 3 and 4 lead directly to a condition for 
growth of an initial crack of radius c in terms of the 
strain energy W0 

W o >1 (2~r/3)e3h3Gc/c (10) 

using the Griffith fracture criterion, Equation 1. Now, 
approximate relations are available for the stiffness, 
and hence strain energy W0, of thin bonded elastic 
layers. For example, for a layer bonded between two 
flat plates, with a radius a much larger than the thick- 
ness h, we have [13, 14] 

F = rca4E6/2h 3 ( l l )  

and for a thin layer bonded between two rigid spheres 
[15, 16] 

F = ~a2Ef/2h (12) 

On substituting for W0 in Equation 10, critical values 
for the mean applied stress 8 (=  F/zca2), denoted 80, 
are obtained as 

and 

- 2  ~r c >~ 2c~3 EGc/3c 

- 2  ac >~ 2c~3(h/a)2EGc/3C (14) 

respectively. 
Recalling that the coefficient c~ is approximately 

equal to unity, Equation 13 indicates that a small 
crack within a thin bonded layer will grow at a mean 
applied tensile stress of about the same magnitude as 
that for a large sample containing a crack of the same 
size, Equation 6. There is little effect of proximity of 
bonded planes on the tendency of a crack to pro- 
pagate. But Equation 14 shows that a crack in an 
elastic layer bonded between two closely spaced rigid 
spheres is much more likely to grow. In this case, the 
critical stress is reduced by the ratio h/a of sphere 
spacing to radius. For example, if the spacing h is 
one-tenth of the radius a, then the fracture stress will 
be only one-tenth of the regular tensile breaking stress. 

However, for closely spaced spheres, the rate of 
release of strain energy falls off markedly as the crack 

grows, Fig. 5. Thus, although a crack will start to 
grow at a low stress, it will not continue to propagate 
until the sample is severed. Instead, it will stabilize at 
a finite size. This is precisely what is observed [9]. 

3.6. Crack g r o w t h  or void e x p a n s i o n ?  
Equation 13 applies to a pre-existing crack in a thin 
layer bonded between flat surfaces. Unless the crack is 
unusually large, it predicts a much greater critical 
stress than for unbounded expansion of a pre-existing 
void by a dilatant stress, Equation 2. For example, if 2 
E is given a value of 2MPa, representative of soft 
elastomeric solids, and Gc is given a value of 1 kJ m-Z, 
typical of reasonably strong rubbery solids, then the 
fracture stress is calculated from Equation 13 to be 
about 7.5MPa, when the initial crack radius is 
assumed to be 25 #m and putting ~ = 1. On the other 
hand, the mean applied stress at which a critical dila- 
tant stress of 5E/12 is reached in the centre is only 
about 0.9 MPa. Thus, void expansion is likely to be 
the first mechanism of internal fracture encountered in 
stretching thin bonded layers, unless they contained 
exceptionally large initial cracks. 

For a thin layer bonded between spherical surfaces, 
the critical stress for crack growth is much smaller, by 
the factor h/a, Equation 14. Previous analyses have 
shown that the maximum dilatant stress - P m  set up 
in the centre of a thin layer is increased in inverse 
proportion, relative to the mean applied stress [15, 16] 

- f m / a  = a/h 

so that the critical stress, 6c, for void expansion will be 
reduced by the same factor. Thus, the relative tend- 
ency for growth of an initial crack compared to expan- 
sion of an existing void is not changed. Both processes 
are made easier, and by the same factor, in a thin 
layer bonded between spherical surfaces. Again, 
therefore, void expansion is likely to be the first failure 
encountered. 

In the above discussion, failure by debonding at the 
interface has been ignored. As shown previously, 

(13) stresses for interfacial failure will be higher than for 
growth of a central crack if the fracture energies are 
similar. Thus, only if the interface is much weaker 
than the material itself (or if the interface contains 
unusually large debonds) will debonding occur before 
void formation. 

4. Conclusions 
1. Griffith's fracture criterion for growth of a cir- 

cular crack of radius c is given in Equation 1. For 
small cracks in thin bonded layers, the left-hand side 
of this relation, ~?(A W)/Oc, is given approximately by 
3 Woc2/h 3, where h is the layer thickness, i.e. the mini- 
mum distance separating the rigid bonded surfaces. 
For small cracks in thick layers this term is given 
approximately by 3 Woc2/a2h, where a is the radius of 
the layer. Thus, the effective volume of the specimen, 
from which energy is released by crack growth, is 
given approximately by h 3 in the first case and by the 
volume of the entire layer (rca2h) in the second. 

2. In thin layers, the dependence of this term on c 
becomes much smaller as the crack grows. Thus a 
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crack will reach a stable size eventually, without caus- 
ing the specimen to break in two. In thick layers, on 
the other hand, once the condition for crack growth is 
met a crack will grow catastrophically. 

3. The reduction in strain energy caused by an inter- 
facial crack is only one-half of that caused by a central 
crack of the same size. Thus, other things being equal, 
a central crack will grow preferentially. 

4. Simple finite element analyses provide useful 
information about fracture in model systems, like 
those considered here, that are somewhat too com- 
plicated to be amenable to solution in closed form and 
yet seem sufficiently general to be of wide application. 
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